26 research outputs found

    Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction

    Full text link
    User response prediction, which models the user preference w.r.t. the presented items, plays a key role in online services. With two-decade rapid development, nowadays the cumulated user behavior sequences on mature Internet service platforms have become extremely long since the user's first registration. Each user not only has intrinsic tastes, but also keeps changing her personal interests during lifetime. Hence, it is challenging to handle such lifelong sequential modeling for each individual user. Existing methodologies for sequential modeling are only capable of dealing with relatively recent user behaviors, which leaves huge space for modeling long-term especially lifelong sequential patterns to facilitate user modeling. Moreover, one user's behavior may be accounted for various previous behaviors within her whole online activity history, i.e., long-term dependency with multi-scale sequential patterns. In order to tackle these challenges, in this paper, we propose a Hierarchical Periodic Memory Network for lifelong sequential modeling with personalized memorization of sequential patterns for each user. The model also adopts a hierarchical and periodical updating mechanism to capture multi-scale sequential patterns of user interests while supporting the evolving user behavior logs. The experimental results over three large-scale real-world datasets have demonstrated the advantages of our proposed model with significant improvement in user response prediction performance against the state-of-the-arts.Comment: SIGIR 2019. Reproducible codes and datasets: https://github.com/alimamarankgroup/HPM

    Solid-surface vitrification is an appropriate and convenient method for cryopreservation of isolated rat follicles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cryopreservation of isolated follicles may be a potential option to restore fertility in young women with cancer, because it can prevent the risks of cancer transmission. Several freezing protocols are available, including slow-rate freezing, open-pulled straws vitrification (OPS) and solid-surface vitrification (SSV, a new freezing technique). The purpose of our study was to investigate the effects of these freezing procedures on viability, ultrastructure and developmental capacity of isolated rat follicles.</p> <p>Methods</p> <p>Isolated follicles from female Sprague-Dawley rats were randomly assigned to SSV, OPS and slow-rate freezing groups for cryopreservation. Follicle viability assessment and ultrastructural examination were performed after thawing. In order to study the developmental capacity of thawed follicles, we performed <it>in vitro </it>culture with a three-dimensional (3D) system by alginate hydrogels.</p> <p>Results</p> <p>Our results showed that the totally viable rate of follicles vitrified by SSV (64.76%) was slightly higher than that of the OPS group (62.38%) and significantly higher than that of the slow-rate freezing group (52.65%; <it>P </it>< 0.05). The ultrastructural examination revealed that morphological alterations were relatively low in the SSV group compared to the OPS and slow-rate freezing groups. After <it>in vitro </it>culture within a 3D system using alginate hydrogels, we found the highest increase (28.90 ± 2.21 μm) in follicle diameter in follicles from the SSV group. The estradiol level in the SSV group was significantly higher than those in the OPS and slow-rate freezing groups at the end of a 72-hr culture period (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>Our results suggest that the SSV method is an appropriate and convenient method for cryopreservation of isolated rat follicles compared with the conventional slow-rate freezing method and the OPS method.</p
    corecore